Emg Signal Classification Using Wavelet Transform and Fuzzy Clustering Algorithms
نویسندگان
چکیده
The electromyographic (EMG) signals can be used as a control source of artificial limbs after it has been processed. The objective of this work is to achieve better classification for four different movements of a prosthetic limb making a time-frequency analysis of EMG signals which covers a feature extraction tools in the problem of the EMG signals while investigating the related dimensionality reduction and fuzzy classification.
منابع مشابه
Comparative Analysis of Wavelet-based Feature Extraction for Intramuscular EMG Signal Decomposition
Background: Electromyographic (EMG) signal decomposition is the process by which an EMG signal is decomposed into its constituent motor unit potential trains (MUPTs). A major step in EMG decomposition is feature extraction in which each detected motor unit potential (MUP) is represented by a feature vector. As with any other pattern recognition system, feature extraction has a significant impac...
متن کاملA COMPARATIVE ANALYSIS OF WAVELET-BASED FEMG SIGNAL DENOISING WITH THRESHOLD FUNCTIONS AND FACIAL EXPRESSION CLASSIFICATION USING SVM AND LSSVM
This work presents a technique for the analysis of Facial Electromyogram signal activities to classify five different facial expressions for Computer-Muscle Interfacing applications. Facial Electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researche...
متن کاملClassification of EMG signals using combined features and soft computing techniques
The motor unit action potentials (MUPs) in an electromyographic (EMG) signal provide a significant source of information for the assessment of neuromuscular disorders. Since recently there were different types of developments in computer-aided EMG equipment, different methodologies in the time domain and frequency domain has been followed for quantitative analysis of EMG signals. In this study,...
متن کاملFuzzy Clustering and Hyperanalytic Wavelet Transform for Lossy Image Compression: A Review
Clustering techniques are mostly unsupervised methods that can be used to organize data into groups based on similarities among the individual data items. Most clustering algorithms do not rely on assumptions common to conventional statistical methods, such as the underlying statistical distribution of data, and therefore they are useful in situations where little prior knowledge exists. The po...
متن کاملCSE - 791 FPGA Circuits and Applications Fall 2009 Project Report on Signal Processing and Pattern Recognition using Continuous Wavelets Under guidance of Prof . Fred Schlereth By Ronak Gandhi
Goal This work aims at designing and implementing FPGA based module to process and perform pattern recognition on EMG (Electromyography) signals that are received from human muscular movements that are otherwise complex to analyze on some standard methods. Purpose On the completion of this work we want to gain proficiency in following areas Studying the available algorithms for processing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003